00 6 Calabi - Yau Algebras
نویسنده
چکیده
We introduce some new algebraic structures arising naturally in the geometry of CY manifolds and mirror symmetry. We give a universal construction of CY algebras in terms of a noncommutative symplectic DG algebra resolution. In dimension 3, the resolution is determined by a noncommutative potential. Representation varieties of the CY algebra are intimately related to the set of critical points, and to the sheaf of vanishing cycles of the potential. Numerical invariants, like ranks of cyclic homology groups, are expected to be given by 'matrix integrals' over representation varieties. We discuss examples of CY algebras involving quivers, 3-dimensional McKay correspondence , crepant resolutions, Sklyanin algebras, hyperbolic 3-manifolds and Chern-Simons. Examples related to quantum Del Pezzo surfaces are discussed in [EtGi].
منابع مشابه
Deformed Calabi-yau Completions
We define and investigate deformed n-Calabi-Yau completions of homologically smooth differential graded (=dg) categories. Important examples are: deformed preprojective algebras of connected non Dynkin quivers, Ginzburg dg algebras associated to quivers with potentials and dg categories associated to the category of coherent sheaves on the canonical bundle of a smooth variety. We show that defo...
متن کاملCocommutative Calabi-yau Hopf Algebras and Deformations
The Calabi-Yau property of cocommutative Hopf algebras is discussed by using the homological integral, a recently introduced tool for studying infinite dimensional AS-Gorenstein Hopf algebras. It is shown that the skew-group algebra of a universal enveloping algebra of a finite dimensional Lie algebra g with a finite subgroup G of automorphisms of g is Calabi-Yau if and only if the universal en...
متن کامل/ 96 07 02 9 v 1 3 J ul 1 99 6 The elliptic genus of Calabi - Yau 3 - and 4 - folds , product formulae and generalized Kac - Moody algebras
The elliptic genus of Calabi-Yau 3-and 4-folds, product formulae and generalized Kac-Moody algebras. ABSTRACT In this paper the elliptic genus for a general Calabi-Yau fourfold is derived. The recent work of Kawai calculating N=2 heterotic string one-loop threshold corrections with a Wilson line turned on is extended to a similar computation where K3 is replaced by a general Calabi-Yau 3-or 4-f...
متن کاملOn the homology of almost Calabi-Yau algebras associated to SU (3) modular invariants
We compute the Hochschild homology and cohomology, and cyclic homology, of almost Calabi-Yau algebras for SU(3) ADE graphs. These almost Calabi-Yau algebras are a higher rank analogue of the pre-projective algebras for Dynkin diagrams, which are SU(2)-related constructions. The Hochschild (co)homology and cyclic homology of A can be regarded as invariants for the braided subfactors associated t...
متن کاملStable Calabi-yau Dimension for Finite Type Selfinjective Algebras
We show that the Calabi-Yau dimension of the stable module category of a selfinjective algebra of finite representation type is determined by the action of the Nakayama and suspension functors on objects. Our arguments are based on recent results of C. Amiot, and hence apply more generally to triangulated categories having only finitely many indecomposable objects. Throughout, k is an algebraic...
متن کاملCluster-tilted Algebras Are Gorenstein and Stably Calabi-yau
We prove that in a 2-Calabi-Yau triangulated category, each cluster tilting subcategory is Gorenstein with all its finitely generated projectives of injective dimension at most one. We show that the stable category of its Cohen-Macaulay modules is 3-CalabiYau. We deduce in particular that cluster-tilted algebras are Gorenstein of dimension at most one, and hereditary if they are of finite globa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006